Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Xiao-Fang Li,* Ya-Qing Feng, Xiao-Fen Hu and Mian Xu

School of Chemical Engineering and Technology, Tianjin University, The State Key Laboratory of C1 Chemical Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.063$
$w R$ factor $=0.181$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1'-Benzyl-5"-benzylidene-1'-methyl-4'-phenyl-1H-indole-3-spiro-2'-pyrrolidine-3^{\prime}-spiro-3"-piperidine-2(3H), $3^{\prime \prime}$-dione

The title compound, $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}$, was synthesized by the intermolecular [3+2]-cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 1-benzyl-3,5-dibenzylidene-piperidin-4-one. There are two spiro junctions in the molecule, which consists of a nearly planar 2-oxindole ring, an envelope pyrrolidine ring and a chair piperidone ring. There is an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, the $\mathrm{N} \cdots \mathrm{O}$ distance being 2.835 (3) Å.

Comment

Spiro compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, (I), is reported.

There are two spiro junctions in the molecule, which consists of 2-oxindole, pyrrolidine and piperidone rings. The pyrrolidine ring ($\mathrm{N} 2 / \mathrm{C} 7 / \mathrm{C} 6 / \mathrm{C} 5 / \mathrm{C} 8$) displays an envelope conformation. The $\mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 5 / \mathrm{C} 6$ moiety is nearly planar and the mean deviation from this plane is 0.03 (1) \AA. Atom C7 is displaced from the N2/C8/C5/C6 plane by 0.64 (2) A , forming the flap of the envelope. The dihedral angle between the $\mathrm{N} 2 /$ $\mathrm{C} 7 / \mathrm{C} 6$ and $\mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 5 / \mathrm{C} 6$ planes is 43.4 (4) ${ }^{\circ}$. The dihedral angle between the C30-C35 phenyl plane and the N2/C8/C5/C6 plane is $63.9(3)^{\circ}$. The 2-oxindole ring system (C8/C9/N3/C10/ $\mathrm{C} 15 / \mathrm{C} 14 / \mathrm{C} 13 / \mathrm{C} 12 / \mathrm{C} 11)$ is nearly planar and the mean deviation from this plane is 0.03 (1) \AA. The dihedral angle between the 2-oxindole plane and the $\mathrm{N} 2 / \mathrm{C} 8 / \mathrm{C} 5 / \mathrm{C} 6$ plane is $86.9(3)^{\circ}$. The piperidone ring has the usual chair conformation. In the crystal structure, there is an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, and also $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions (Fig. 2 and Table 2).

Experimental

A mixture of 1-benzyl-3,5-dibenzylidene-piperidin-4-one (2 mmol), isatin (2 mmol) and sarcosine (2 mmol) was refluxed in methanol

Received 15 April 2003 Accepted 22 April 2003 Online 30 April 2003
(80 ml) until the disappearance of the starting material, as evidenced by thin-layer chromatography. After the reaction was complete, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate $=$ $5: 1)$ to give the title compound, (I). 20 mg of (I) was dissolved in 15 ml chloroform, the solution was kept at room temperature for 15 d and natural evaporation gave colorless single crystals of (I), suitable for X-ray analysis. M.p. $487-488 \mathrm{~K}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3493(\mathrm{~N}-\mathrm{H})$, 1694, $1682(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $): 1.86(1 \mathrm{H}, d), 2.16(3 \mathrm{H}$, $s), 2.76-2.81(1 \mathrm{H}, m), 3.18(1 \mathrm{H}, d), 3.41(2 \mathrm{H}, m), 3.42-3.64(1 \mathrm{H}, m)$, $3.93(1 \mathrm{H}, d), 3.94-4.00(1 \mathrm{H}, m), 4.80-4.86(1 \mathrm{H}, m), 6.67(1 \mathrm{H}, s), 6.67-$ $7.37(19 \mathrm{H}, m) ; 7.40(1 \mathrm{H}, b r)$.

Crystal data

$\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=539.65$
Triclinic, $P \overline{1}$
$a=8.535$ (3) \AA 。
$b=11.441$ (4) \AA
$c=15.682(6) \AA$
$\alpha=102.027$ (7) ${ }^{\circ}$
$\beta=92.423(7)^{\circ}$
$\gamma=100.637(7)^{\circ}$
$V=1466.8(10) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.222 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 715 \\
& \quad \text { reflections } \\
& \theta=2.5-25.5^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colorless } \\
& 0.22 \times 0.16 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer

2883 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {int }}=25.0^{\circ}$
$h=-10 \rightarrow 10$
Absorption correction: none
$k=-13 \rightarrow 8$
7663 measured reflections
$l=-18 \rightarrow 18$

5152 independent reflections

$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.181$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2} \mathrm{P}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.10$
5152 reflections
372 parameters
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.30 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N1-C16	$1.468(4)$	N3-C10	$1.403(4)$
N2-C36	$1.467(4)$	O1-C9	$1.229(3)$
C1-N1-C2	$108.7(2)$	C8-N2-C36	$115.4(3)$
C7-N2-C8	$107.0(3)$	O1-C9-N3	$125.2(3)$
C7-N2-C8-C5	$33.3(3)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 30-\mathrm{C} 35$	$-13.2(5)$
N2-C8-C9-N3	$-119.4(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	1.99	$2.835(3)$	166
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1$	0.97	2.34	$2.950(4)$	120
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2$	0.98	2.29	$2.801(4)$	111
$\mathrm{C} 22-\mathrm{H} 22 \cdots \mathrm{~N} 1$	0.93	2.57	$2.898(5)$	101
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 2$	0.93	2.47	$2.800(4)$	101

Symmetry code: (i) $-x, 1-y,-z$.

All H atoms were included in calculated positions, they were included in the refinement in riding-motion approximation.

Figure 1
The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms have been omitted.

Figure 2
The crystal structure of (I), viewed along the a axis. The broken lines indicate hydrogen bonds.

Data collection: $S M A R T$ (Bruker, 1997); cell refinement: $S M A R T$; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.
James, D., Kunze, H. B. \& Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M., Sasaki, T. \& Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

